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Abstract

Purpose – This study proposes to develop and investigate different iterative solvers for
non-Newtonian flow equations.

Design/methodology/approach – Existing approaches for the time discretization of the flow
equation and for an iterative solution of the discrete systems are discussed. Ideas for further
development of existing preconditioners are proposed, implemented and investigated numerically.

Findings – A two-level preconditioning, consisting of a transformation of the original system in the
first step and subsequent preconditioning of the transformed system is suggested. The GMRES
iterative method, which usually performs well when applied to academic problems, showed
dissatisfactory performance for the type of industrial flow simulations investigated in this work. It
was found that the BiCGStab method performed best in the tests presented here.

Research limitations/implications – The iterative solvers considered here were investigated only
for a certain class of polymer flows. More detailed studies for other non-Newtonian flows should be
carried out.

Originality/value – The work presented in this paper fills a gap related to the usage of efficient
iterative methods for non-Newtonian flow simulations.
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Paper type Research paper

1. Introduction
Efficient numerical simulation of non-Newtonian flows is a non-trivial task. While the
numerical methods for Newtonian flows are, in general, well studied, this is not the
case for non-Newtonian fluids. Here we discuss the numerical solution of a class of flow
problems for generalized Newtonian fluids. In this case the scalar viscosity is not a
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constant but depends on the temperature and on the effective strain rate (as well as on
the pressure in certain cases). As a result, the momentum equations are strongly
coupled through their viscous terms (recall that for Newtonian fluids the coupling of
the momentum equations is only through the convective terms and the pressure). In the
Newtonian case, projection methods for decoupling the momentum and the continuity
equations are often used (for details and further references on fractional time step
projection methods of Chorin type, or on SIMPLE-type algorithms, Gresho and Sani,
1998; Turek, 1999; Fletcher, 1991; Ferziger and Peric, 1999). Decoupling methods might
not be efficient in the non-Newtonian case when the momentum equations are strongly
coupled through the viscous terms. An alternative to the segregated (decoupled)
solvers are the so-called coupled solvers (Turek, 1999; Deng et al., 2001; Ferry, 2002;
Silvester et al., 2001; Axelsson and Neytcheva, 2003; Benzi, 2004). In this case the
momentum and the (transformed) continuity equation are solved together. In the
current paper we study the performance of certain iterative solvers for solving such
coupled systems arising in the discretization of non-Newtonian flow equations.

The remainder of the paper is organized as follows. The next section presents the
governing equations. The discretization is discussed in Section 3. Iterative methods
and preconditioners for solving the coupled system of equations are explained in
Section 4. Section 5 is devoted to numerical experiments and their analysis. In the
last section we give a summary and discussion of our work and draw some
conclusions.

2. Governing equations
If we consider unsteady non-isothermal Navier-Stokes equations describing weakly
compressible flow of a liquid with variable viscosity, e.g. like the fluids described by
the Cross WLF model, the equations for momentum conservation have the following
form:

›ðruiÞ

›t
þ divðruiuÞ ¼ 2

›p

›xi
2

2

3

›

›xi
ðmdivðuÞÞ þ divð2m _giÞ ð1Þ

The ui, i ¼ 1; 2; 3 are the components of the velocity vector, r denotes the density, m is
the viscosity, and:

_g ¼
1

2
ð7uþ ð7uÞTÞ

is the shear rate tensor. Mass conservation is governed by the continuity equation:

›r

›t
þ divðruÞ ¼ 0; ð2Þ

and the conservation of energy is provided by the energy equation (written with
respect to enthalpy h):

›ðrhÞ

›t
þ ð~u;7TÞ ¼ divðk7TÞ þ mFV þ L

›f s

›t
: ð3Þ

The last two terms account for dissipative heating and the latent heat released during
phase transition, respectively.
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The equations of state for the density and viscosity have to be added to the system
of conservation equations. The density r( p, T) depends on pressure and temperature.
The viscosity mðT; j _gj; pÞ depends on temperature and the effective rate j _gj of the
strain tensor. Accounting for a pressure dependence is also desirable in certain cases.
Specific rheology and pvT models can be selected from the SIGMASOFTq material
database (see www.sigmasoft.de for detailed information on this subject).

The unknowns which have to be determined from the above system of equations are
temperature T, the velocity vector ~u; density r, pressure p and viscosity m.

The system describes, in particular, the flow and solidification of a polymer liquid.
The simulation of polymer molding and solidification is of special interest for us, and
the principle goal of our investigations is to accelerate the flow solver in
SIGMASOFTq. In fact, a relatively small time step has to be used in simulating
polymer solidification due to the existing free boundaries during mold filling and
subsequent solidification of the polymer melt. The most CPU consuming part of the
simulation is the calculation of the flow at each time step. Motivated by this, we
consider below the flow equations decoupled from the heat equation. The latter is not
discussed here. We note that the main non-isothermal effects to be handled here are the
temperature variations occurring mainly in the region near the walls of the mold,
which lead to a significant variation – possibly over several orders of magnitude – in
the viscosity by means of its temperature dependence, and result in a strong coupling
of the momentum equations through the viscous terms.

We denote the operators corresponding to the convective and viscous terms in the
momentum equations by C~u and D~u: Obviously these operators depend on the
unknowns as C~u ¼ C~uð~uÞ;D~u ¼ D~uðmðT; j _gj; pÞÞ: Further we denote the operators
corresponding to the gradient and divergence by G and B, respectively. Using this
notation we are able to rewrite the Navier-Stokes equations in the following way:

›ðr~uÞ

›t
þ C~u~u2 D~u~uþ Gp ¼ 0; ð4Þ

B~u ¼ 0: ð5Þ

Note that weak compressibility does not play an essential role in the type of liquid
polymer flows we consider here, therefore, we will not pay special attention to it.
Although we solve the weakly compressible equations, we restrict our discussion to the
incompressible case, which is sufficient for our purposes. For a more detailed study on
methods for weakly compressible flows (in cases when compressibility is important)
we refer to Core and Angot (2002), Churbanov (2003) and Ferziger and Peric (1999) and
references therein.

3. Discretization
Finite volume method on a staggered grid is applied for discretizing in space the
above system of equations (Hattel, 2005 or Fletcher, 1991). Particular form of this
space discretization is not discussed here, instead we concentrate on discretization
in time and later on, on iterative methods for solving the discretized system.
Let us shortly discuss three different time discretization strategies: fractional time
step projection methods, fractional time step coupled method, and implicit
discretization.
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First, consider fractional time step projection methods. These methods consist of
solving the momentum equations in two sub-steps. Projection methods (e.g. Chorin
type methods, Gresho and Sani, 1998 for a detailed discussion) treat pressure explicitly
at the first step, which allows to decouple the momentum and the continuity equations
(the last is used for obtaining an equation with respect to the pressure or the pressure
correction, respectively). A variant of such a projection method looks as follows:

ðr~uÞnþð1=2Þ þ tðC~u~u
nþð1=2Þ 2 D~u~u

nþð1=2ÞÞ ¼ ðr~uÞn 2 tGpn;

ðr~uÞnþ1 2 ðr~uÞnþð1=2Þ ¼ 2t½Gpnþ1 2 Gpn�; Bðr~uÞnþ1 ¼ 0:

We use the superscript n to denote the values at the old time level, and n þ 1 to denote
the values at the new one. The variable t U t nþ1 2 t n denotes the time step. The
discrete operators are denoted by the same notation as introduced above for
the continuous ones. The viscosity function in the diffusive terms and the velocity in
the convective terms are both treated explicitly.

The sum of the first and the second equations above yields a discretization of the
momentum equations. Applying the divergence operator (denoted by B in our case) to
the second equation, and using the third (continuity) equation, we obtain:

tBGdp ¼ 2Bðr~uÞnþ1 þ Bðr~uÞnþð1=2Þ ¼ Bðr~uÞnþð1=2Þ;

where dp ¼ pnþ1 2 pn: The result of the above Chorin type discretization is a
Poisson-type equation for the pressure correction, which is decoupled from the
momentum equations. There exists an extensive mathematical literature concerning
first and second order fractional time step discretization, the incremental and
non-incremental form of equations, stability, splitting of the boundary conditions, etc.
Some recent results as well as further references can be found, e.g. in Brown et al.
(2001), Minev (2001) and Armfield and Street (2002). Note that in the Newtonian case,
the momentum equations discretized in this way are decoupled and can be solved
consecutively. However, this is not the case for non-Newtonian fluids. An attempt to
discretize off-diagonal viscous terms explicitly will lead to severe restrictions on the
time step.

Fractional time step coupled method are an alternative for the projection methods.
In coupled methods the pressure is treated implicitly in the momentum equations. Here
we use an approach of this type:

ðr~uÞnþð1=2Þ ¼ ðr~uÞn 2 tC~u~u
n 2 tGpn;

ðr~uÞnþ1 2 ðr~uÞnþð1=2Þ ¼ t½D~u~u
nþ1 2 Gpnþ1 þ Gpn�; Bðr~uÞnþ1 ¼ 0:

We obtain again a Poisson-type operator with respect to the pressure correction from
the second and third equations, but in this case the system remains coupled, i.e. the
second and the transformed third equation have to be solved simultaneously. In fact, in
this case we decouple only the convective and viscous transport, but the viscous and
pressure forces remain coupled.

An interesting fractional time step discretization is suggested in Vabishchevich and
Samarskii (2000), but this is not discussed here.
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Finally, if an implicit discretization is used instead of the fractional time step
approach, one gets the following equations:

ðr~uÞnþ1 þ tðC~u~u
nþ1 2 D~u~u

nþ1Þ ¼ ðr~uÞn 2 tGpnþ1; Bðr~uÞnþ1 ¼ 0:

4. Iterative methods for the discretized system
In this section we consider iterative methods for the solution of the coupled system of
the discretized equations. Such a system arises after the implicit discretization, or after
the fractional time step coupled discretization. We rewrite the large-scale system of
linear algebraic equations to be solved at each time step t ¼ t nþ1 as follows,
introducing an obvious change in our notation to display the structure of the system
more clearly:

A tG

B 0

 !
~u

p

 !
¼

S~u

0

 !
: ð6Þ

Further on we use the abbreviated notations:

Lv ¼ b

with v ¼ ð~u; pÞt: Let us briefly discuss projection and coupled approaches for an
iterative solution of the above system.

4.1 Iterative projection methods
In this subsection we discuss iterative projection methods like SIMPLE. (A good
systematization and detailed references for these methods can be found, e.g. in Turek’s,
1999.) One way to derive such methods in the purely incompressible case proceeds as
follows. Solving the first equation with respect to velocity yields:

~u ¼ A21ðSu 2 tGpÞ: ð7Þ

Substituting this result in the second equation, we obtain:

tBA21Gp ¼ BA21Su: ð8Þ

As the matrix A 21 is not sparse, solving the above equation directly is prohibitively
expensive. Instead, an iterative procedure (the preconditioned Richardson method) can
be set-up:

p iþ1 ¼ p i 2M 21ðtBA21Gpi 2 BA21SuÞ ð9Þ

This means that at each iteration we solve:

Mdp ¼ 2ðtBA21Gpi 2 BA21SuÞ ð10Þ

The preconditioner should be spectrally close to tBA 21G, and at the same time easily
invertible. The usual choice is:

M ¼ tBD21G;
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where D is a diagonal matrix, so that M is identical to discretization of a second order
elliptic operator. For example, in SIMPLE the choice is:

D ¼ diag{A}: ð11Þ

Let us now investigate the structure of the matrix A in a more detailed way for the
cases of either constant or variable viscosity. In these cases the matrix acquires the
following forms:

. Constant viscosity:

A ¼

A11 0 0

0 A22 0

0 0 A33

0
BBBBB@

1
CCCCCA:

. Variable viscosity:

A ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

0
BBBBB@

1
CCCCCA:

The above representation shows that in the case of strong off-diagonal blocks the
approximation of A with a diagonal matrix D should be rather bad. Note that even in
the Newtonian case (block-diagonal matrix A) the decoupling approach might not be
successful. An example are flow computations on stretched grids (Turek, 1999).

4.2 Iterative methods for the coupled system
An alternative to the decoupling approach are the coupled solvers. There are
different coupled solvers. Few of them work with non transformed system (e.g. the
Vanka approach Turek, 1999), others first transform the system and solve it
afterwards. In the CFD literature coupled solvers are frequently applied as
smoothers within nonlinear multigrid flow solvers (Turek, 1999; Ferry, 2002; Deng
et al., 2001). The coupled solvers require more memory compared to the segregated
solvers. Some software developers (e.g. Fluent) provide both types of solvers. In
general the area of applicability of coupled solvers is rather restricted. It should be
mentioned that some authors consider coupled solvers to have advantages for
steady state solutions, and decoupled techniques to be being preferable for
unsteady problems (Turek, 1999; Oosterlee, 1993). However, very few particular
cases have been analyzed completely, and further studies are necessary in order to
confirm or reject the above statement. Another point are observations stating that
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coupled solvers are more robust for some flow problems and less robust for
others, but additional work is needed in order to study and classify the
advantages of the two approaches, too.

In this paper we discuss coupled solvers based on proper preconditioning of the
coupled system (equation (6)). A detailed discussion and further references concerning
such type of the coupled solvers can be found, e.g. in Silvester et al. (2001), Axelsson
and Neytcheva (2003) and Benzi (2004). The specifics of our approach are described
below. A right block triangular preconditioner is used in Silvester et al. (2001) (the
statement in that paper is that left, right, or double sided preconditioning are almost
identical). The preconditioner they use is in the form:

M ¼
A R

0 S

 !
:

So that:

LM 21 ¼
I 2ðR þ tGÞS21

BA21 2BA21RS21

 !
:

We do not discuss the specific choice of operators R and S here, the interested reader
will find them in Silvester et al. (2001).

Several preconditioners for equation (6) are carefully analyzed within the recent
paper (Axelsson and Neytcheva, 2003). Among them are block Gauss-Seidel
preconditioning, a preconditioner based on congruence transformation, and a
two-sided block incomplete preconditioner. Considering a specific example, e.g. the
block Gauss-Seidel preconditioner is given by:

M ¼
D1 0

B D2

 !
:

So that:

M 21L ¼

D21
1 A tD21

1 G

2D21
2 B D21

1 A2 I
� �

2tD21
2 BD21

1 G

0
B@

1
CA:

For the particular choice of operators D1 and D2, as well as for a discussion on some
other preconditioners, we refer to Axelsson and Neytcheva (2003).

In general (Barrett et al., 1994) applying a preconditioned iterative method to solve a
system of equations is equivalent to applying a non-preconditioned method for the
solution the transformed system. The above approaches (Silvester et al., 2001;
Axelsson and Neytcheva, 2003) are examples of this type. Instead of using this
approach, we use a two stage approach to solve equation (6). In the first stage we
transform the system using a matrix like the preconditioners mentioned above. In the
second stage, instead of using an unpreconditioned iterative method, we use a
preconditioned one. Of course, this two-stage procedure can be written and analyzed as
a one-stage one. We postpone such an analysis for another paper. Here we concentrate
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on the algorithmical part and on the numerical study of the performance of the
preconditioners. So, at the first stage we use the matrix:

M 21 ¼
D 0

2BD I

 !
:

so that:

M 21L ¼
DA tDG

B2 BDA 2tBDG

 !
:

The aim of this transformation is to obtain “good” blocks at the main diagonal of the
transformed system. It is clear, that the choice D ¼ A21 will lead to a block triangular
system, but the operator BDG will have a full matrix in this case. So, like in SIMPLE,
we select:

D ¼ ðdiag{A}Þ21

Thus, we obtain a transformed system:

~Lv ¼ ~b; ð12Þ

where ~L is not a block triangular matrix. However, the blocks on the main diagonal are
easily invertible (they are similar to a discretization of the Poisson equation). This
system can be also written down as:

~A t ~G

~B ~L

 !
~u

p

 !
¼

~b1

b2

0
@

1
A: ð13Þ

At the second stage we apply block triangular preconditioners to the transformed
system.

5. Numerical experiments
Numerical experiments were performed in order to evaluate the performance of the
linear solvers applied in the simulation of liquid polymer flow. We choose a simple test
geometry shown in Figure 1 consisting of u-shaped pipe with a contraction and an
expansion in the middle. It is well known that plastic melts do not obey Newtonian
behavior, especially near the freezing temperature. Plastic melts show shear thinning
behavior, to name one of the non-Newtonian flow properties commonly observed for
this type of fluids. This leads to a necessity of using specific material models for the
viscosity including temperature, shear rate and pressure dependence. Several rheology
models are available in the material database of SIGMASOFTq for instance, the
Cross-WLF model (Gramann et al., 2001). It belongs to the so-called generalized
Newtonian models, and it is used in our simulations. During the process the viscosity
changes by several orders of magnitude.

We solve an unsteady problem, starting simulations from the liquid being at rest,
and calculating until the steady state is reached. At each time step the heat equation is
decoupled from the system due to an explicit treatment of the dissipative terms and of
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the velocity in the convective term of the heat equation. The coupled momentum and
continuity equations are transformed (as it was described at the end of the preceding
section) and after that solved by a preconditioned iterative method. Several methods
and preconditioners are applied. More precisely, the used iterative methods are:

. CGS. Conjugate gradient squared method;

. BiCGStab. Bi-conjugate gradient method, stabilized; and

. GMRES(m). Generalized minimal residuum method.

We note that GMRES is the preferred method in Silvester et al. (2001) and Axelsson
and Neytcheva (2003). As it will be shown below, in general GMRES is not suitable for
us. The simulations show that good convergence can be achieved only using long
sequences, which is impossible in 3D simulations due to the memory limitations. Note,
that Silvester et al. (2001) and Axelsson and Neytcheva (2003) use “long enough”
sequences, but the examples they solve are more of academic type.

Concerning the choice of the preconditioners, we have used three preconditioners for
the transformed system (equation (13)). These are block diagonal, upper triangular
(denoted by T – in below equations), and lower triangular (denoted by TL). That is:

M 11 0

0 M 22

 !
; T ¼

M 11 M 12

0 M 22

 !
; TL ¼

M 11 0

M 21 M 22

 !

The following variants for the blocks in the preconditioners were used:
. M 12 ¼ t ~G; M 21 ¼ ~B;
. M 11 ¼ ILU ~A; M 11 ¼ BRILU ~A for various a (calculated for diagonal blocks);

M 11 ¼ ~A21; and
. M 22 ¼ ILU ~L; M 22 ¼ RILU ~L for various a; M 22 ¼ ~L21.

In the case when the diagonal blocks have to be inverted, either CGS, Jacobi, GMRES,
each preconditioned by RILU(a) or block RILU(a), were used. Additionally, algebraic
multigrid, AMG (Stuben, 2001) was also used for inverting ~L:

Figure 1.
Geometry for evaluating
the linear solvers
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We investigated the performance of the linear solvers with respect to grid size, flow
type, accuracy, Reynolds number and the size of the time step. More precisely, Table I
shows the following tests:

Here Dp stands for the pressure difference between the inlet and outlet. Figure 2
shows an impression about the non-Newtonian case: the variations in the viscosity
are plotted there (recall that viscosity is a constant for Newtonian fluids). The
variations in the viscosity here are moderate. In the simulations of solidification of
real 3D plastic parts, the variation in the viscosity range over several orders of
magnitude.

Below we show several tables with results from simulations. In all cases, the block
diagonal preconditioner performed worse compared to the triangular ones, therefore it
is not included in the tables.

First, we show four tables presenting results obtained without the usage of AMG.
As can be seen in Table II, GMRES with short restart sequences does not provide

good results. The best results here are achieved by BiCGStab preconditioned with an
upper triangular matrix, where the block M11 is a block RILU (0.8) factorization for the

Grid Coarse, 4,584 fluid cells Finer, 38,040 fluid cells
Flow type Newtonian (constant m.) Non-Newtonian (variable m)
Accuracy Lower, 1 ¼ 1023 Higher, 1 ¼ 1028

Velocity Slow, Dp ¼ 10 Faster, Dp ¼ 30
Time step Smaller (0.005 s) Larger (0.1 s)

Table I.
Performed tests for

Venturi pipe flow

Figure 2.
Viscosity
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main sub blocks of ~A; and ~L is approximately inverted by two Jacobi iterations
preconditioned with RILU (0.4) factorization. Performing more or less Jacobi iterations
gives worse results.

GMRES was not used on the coarse grid (Table III) because of the bad results it
showed on the fine grid. The best iterative method and the best preconditioner on the
coarse grid are the same as on the finer grid.

Further, we show results for a non-Newtonian flow with higher variation in the
viscosity (Table IV). This is a non-isothermal flow.

Figure 3 shows the behavior of some linear solvers during all the time steps. It can
be seen that the convergence is more or less uniform during the time stepping.

CGS BiCGStab GMRES(10)
Preconditioner Iter. CPU Iter. CPU Iter. CPU

T-BILU-ILU 228 31 232 31 .500
T-BRILU0.8-RILU0.4 188 26 149 20 .500
T-BRILU0.8-Jac2RILU0.4 138 23 115 18 .500
T-CGS6BRILU0.8-RILU0.4 72 282 70 284 122 398
TL-BILU-ILU 224 37 213 34 .500
TL-BRILU0.8-RILU0.4 180 30 142 23 .500
TL-BRILU0.8-Jac2RILU0.4 138 27 115 22 .500
TL-CGS6BRILU0.8-RILU0.4 60 247 46 195 140 308

Table II.
Number of iteration and
CPU time for
non-Newtonian fast flow
on fine grid, 1 ¼ 1028

CGS BiCGStab GMRES(10)
Preconditioner Iter. CPU Iter. CPU Iter. CPU

T-BILU-ILU 79 1.1 67 0.9
T-BRILU0.8-RILU0.4 62 0.9 58 0.8
T-BRILU0.8-Jac2RILU0.4 54 0.9 47 0.7
T-CGS6BRILU0.8-RILU0.4 47 7.6 46 7.4
TL-BILU-ILU 79 1.3 68 1.1
TL-BRILU0.8-RILU0.4 61 1.0 56 0.9
TL-BRILU0.8-Jac2RILU0.4 52 1.0 44 0.8
TL-CGS6BRILU0.8-RILU0.4 43 6.9 33 5.6

Table III.
Number of iteration and
CPU time for
non-Newtonian fast flow
on coarse grid, 1 ¼ 1028

CGS BiCGStab GMRES(10)
Preconditioner Iter. CPU Iter. CPU Iter. CPU

T-BILU-ILU 185 25.2 140 18.4 1,063 90.4
T-BRILU0.8-RILU0.4 129 17.6 113 14.8 889 75.6
T-BRILU0.8-Jac2RILU0.4 124 20.4 116 18.4 2,628 263.9
T-CGS6BRILU0.8-RILU0.4 90 262.5 83 239.7 133 220.2
TL-BILU-ILU 172 28.3 150 23.8 393 88.6
TL-BRILU0.8-RILU0.4 135 22.1 114 18.0 209 46.2
TL-BRILU0.8-Jac2RILU0.4 125 24.0 132 24.6 186 43.5
TL-CGS6BRILU0.8-RILU0.4 52 162.2 42 125.4 73 125.6

Table IV.
Number of iteration and
CPU time for
non-isothermal
non-Newtonian fast flow
on coarse grid, 1 ¼ 1028
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In certain cases there is no need to solve the linear system arising in the discretization
of unsteady PDEs very accurately. In Table V we show results obtained when low
accuracy, namely 1 ¼ 1 £ 1023; is required. We see that in this case the lower
triangular preconditioner with an exact inverting of the viscous block shows the best
results. This means that the convergence of the iterative methods is different when
using the two different triangular preconditioners. The lower triangular preconditioner
ensures fast reduction of the residual at the beginning of the iterative process, but later
the convergence is slower compared to that obtained with the upper triangular
preconditioner.

It should be noted that for many industrial problems an approximate solution of
the linear system of equations is reasonable. In our case the results obtained with
1 ¼ 1 £ 1023 and 1 ¼ 1 £ 1028 in many cases show less than 10 percent difference.

Finally we show some results obtained using algebraic multigrid for inverting
L (Table VI). Here we observe that the results with AMG are superior to the other
results.

Figure 3.
Number of iterations

at each time step

CGS BiCGStab GMRES(10)
Preconditioner Iter. CPU Iter. CPU Iter. CPU

T-BILU-ILU 45 6.2 16 2.0 60 5.1
T-BRILU0.8-RILU0.4 17 2.3 16 2.0 36 3.1
T-BRILU0.8-Jac2RILU0.4 28 4.6 15 2.4 121 12.3
T-CGS6BRILU0.8-RILU0.4 18 51.8 12 32.1 29 44.6
TL-BILU-ILU 43 7.1 27 4.2 56 9.3
TL-BRILU0.8-RILU0.4 16 2.7 14 2.2 41 5.9
TL-BRILU0.8-Jac2RILU0.4 49 9.4 29 5.4 43 6.9
TL-CGS6BRILU0.8-RILU0.4 1 2.7 1 1.4 1 4.0

Table V.
Number of iteration and

CPU time for
non-isothermal

non-Newtonian fast flow
on coarse grid, 1 ¼ 1023

Solvers for non-
Newtonian flow

equations

613



The results obtained with the test geometry have been confirmed with several
industrial plastic parts (see an example on Figure 4). The speedup of the combination
of RILU and AMG preconditioner lead to a speedup up to factor 4 for complicated
geometries with more than 100.000 fluid cells.

6. Summary
The performance of different preconditioners and iterative methods was studied for a
Venturi geometry, for fast and slow, Newtonian and non-Newtonian flow, on coarse
and finer grids, and for 1 ¼ 1023 and 1 ¼ 1028; using different time steps.

The results for Newtonian and non-Newtonian flows are very close in our
calculations. A reason for this might be that we always treat the viscous block
(momentum equations) in a coupled way. A more detailed comparison with a fully

Figure 4.
Pressure during
compaction stage in
polymer solidification

~A Preconditioner ~L Preconditioner Iterative method Iterations Time [s]

ILU ILU CGS 182 25.6
ILU ILU BiCGstab 194 26.3
RILU 0.8 RILU 0.4 CGS 124 17.5
RILU 0.8 RILU 0.4 BiCGstab 103 14.0
RILU 0.8 Jac 2 RILU 0.4 CGS 105 17.7
RILU 0.8 Jac 2 RILU 0.4 BiCGstab 84 13.7
CGS 6 RILU 0.8 RILU 0.4 CGS 82 172.5
CGS 6 RILU 0.8 RILU 0.4 BiCGstab 68 144.8
RILU 0.8 AMG V CGS 44 <6.9
RILU 0.8 AMG V BiCGstab 41 <5.0

Table VI.
Number of iteration and
CPU time for
non-isothermal
non-Newtonian flow on
fine grid, 1 ¼ 1028
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segregated solution is in progress now and will be a subject of another paper. Another
reason might be the relatively small time step used in our calculations.

We have simulated relatively slow flows, and we did not observe significant
differences between our slower and faster regimes. The choice of the velocities in our
case was motivated by some practical applications (packing phase of injection
molding), for other applications the behavior of the solvers might be different.

BiCGStab has shown the most robust behavior. It was the fastest method in our
tests. GMRES needs long sequences (e.g. 100) for a good convergence, which is
inappropriate for 3D industrial applications.

A lower triangular preconditioner with inversion of the viscous block was the
best choice for lower accuracy (1 ¼ 1023; 1 ¼ 1024).

An upper triangular preconditioner with inversion of the Laplacian by an
algebraic multigrid solver was the best choice for high accuracy ð1 ¼ 1028Þ:

The results presented here concern the performance of the linear solvers for a
particular finite volume discretization and for a particular class of flows. Further
studies are planned to better understand the performance of the solvers for other
geometries, for other non-Newtonian flows and other discretizations.
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